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LIQUID CRYSTALS, 1988, VOL. 3, No. I ,  63-84 

A molecular theoretical derivation of the Landau free energy 
of chiral smectic C liquid crystals 

by MASAHIRO NAKAGAWA 
Department of Electrical Engineering, Faculty of Engineering, The Technological 

University of Nagaoka, Kamitomioka, Nagaoka, Niigata 940-21, Japan 

(Received 2 September 1986; accepted I June 1987) 

A molecular theoretical derivation of the Landau free energy of chiral smectic 
C liquid crystals is presented on the basis of a molecular theoretical approach. The 
excess free energy concerned with the ferroelectric helicoidal structure is derived 
within a mean field approximation. Several material constants such as the Curie 
temperature, the elastic constant, the helical pitch, the piezo- and flexoelectric 
constants and the dielectric susceptibility are expressed in terms of some effective 
intermolecular interaction parameters between molecules. A molecular theoretical 
consideration of the chiral smectic C-smectic A transitions is given in comparison 
with a few previous works. By comparing with some available experimental data 
for DOBAMBC, effective interaction parameters are numerically estimated. 

1. Introduction 
Several theoretical studies of ferroelectric chiral smectic C (S,*) liquid crystals have 

been so far developed as well as many experimental ones [l-15,19,27]. Pikin and 
Indenbom first formulated a phenomenological theory on the basis of symmetry 
consideration of the S,* macroscopic structure [4]. Some phenomenological approaches 
have been successfully applied to explaining such macroscopic properties as thermo- 
dynamic and elastic properties of S y  liquid crystals [5-11]. On the basis of the 
phenomenological theories, several material constants have been experimentally 
obtained [ 191. Therefore, in practice, such phenomenological approaches are con- 
sidered to be very useful in the study of macroscopic properties of s,* liquid crystals. 

On the other hand, it seems also to be important to clarify the macroscopic nature 
of these liquid crystals from a molecular theoretical aspect. For example, from the 
view point of the molecular structural design for S,* materials applicable to fast 
electro-optical switching light valves, we must know the correspondence between the 
molecular structures and the macroscopic properties. In this respect, it seems to be 
worthwhile to derive the Landau free energy accompanied by the S,* structure at a 
molecular level. As a first step for this purpose, van der Meer and Vertogen for- 
mulated a molecular theory of S z  liquid crystals within a molecular field treatment 
[12, 201. They pointed out that the entropy of the molecular packing plays an 
important role in driving the S:-S, transition. But they did not evaluate accurately 
the excluded volume between molecules in the S,* phase on the basis of the molecular 
theory but merely introduced a phenomenological packing temperature so as to take 
account of the molecular packing effect. In consequence, the steric effect through the 
intermolecular repulsion could not be studied in detail. Later Matsushita suggested 
that the molecular packing effect might induce the Sc (or S,*)-S, transitions [13]. 
Similar to the implication by van der Meer and Vertogen [12, 201, he also concluded 
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64 M. Nakagawa 

that while the molecular packing effect has a tendency to align the S,* molecules along 
the layer normal, the attractive interaction tends to incline them with respect to it, and 
that the S,*-SA transition is not of the order-disorder type. In his approach, however, 
since the centres of the molecules were assumed to be completely fixed in the planes 
isolated from each other with a layer spacing, the molecular packing effect was not 
treated as accurately as in the above-mentioned analogous approach by van der Meer 
and Vertogen [12,20]. 

Previously, based on a molecular theory of S, [16] and cholestric liquid crystals 
[ 171, we proposed a concise molecular theory of S,* liquid crystals [ 151. Therein, only 
the effective attractive interaction was taken into account; anisotropic steric effects 
were not included. We explained the S$SA transition as being of an order-disorder 
type in contrast to the above-mentioned explanations by van der Meer and Vertogen 
and Matushita [12,13,20]. Therefore one may conclude that both the energetic 
contribution in the previous work and the entropy contribution considered by van der 
Meer and Vertogen play an important role in driving the S,*-SA transition. The latter 
contribution in particular should be significant for the S,*-SA transition where the S,* 
molecules have an almost saturated orientational order, free from any thermal 
fluctuation, of the long molecular axis. 

As was mentioned above, several types of theories have been proposed by assum- 
ing a uniaxial molecular ordering about the long molecular axes. However, in order 
to study the S,* ferroelectric nature, we have to take account of the biaxial interactions 
between molecules. Osipov and Pikin proposed a theoretical model of S,* liquid 
crystals to explain the strong temperature dependence of the helical pitch near the 
SZ-S, transition point of p-(n-decylobenzylidene)-p-amino-(2-methylbutyl)-cinnamate 
(DOBAMBC) [ 141. In their approach, however, since the intermolecular interaction 
concerned with the driving force of the S,*-S, transition was not included, the 
thermodynamic properties of the SZ-S, transition could not be discussed at  a mol- 
ecular level. In addition, an intermolecular interaction concerned with the flexo- 
electric effect in the S,* phase was not included. As far as we are aware, the ferroelectric 
coupling between molecules and the steric effect concerned with the driving force of 
the S,*-SA transitions have not been simultaneously involved in any molecular statisti- 
cal theory. Moreover, such material constants as the Curie temperature, the elastic 
constant, the piezo- and the flexoelectric coefficients, etc., have not been derived at a 
molecular level. 

The purpose of the present paper is to derive the Landau expansion coefficients 
of SE liquid crystals on the basis of a molecular theory of S,* liquid crystals and to 
investigate the mechanism of S,*-SA transitions. In this work, the ferroelectric inter- 
actions between s,* molecules are taken into account through the intermolecular 
attraction alone and not through the repulsion. In addition, a saturated molecular 
orientational order or completely aligned hard rods along the local director denoting 
the S,* helicoidal structure is assumed for the evaluation of an excess free energy 
accompanied by the S,* structure. This simplification for the saturation orientational 
order is suggested by the experimental finding by Doane et al., who observed that the 
orientational order in the S, phase is almost saturated for SA liquid crystals with a 
relatively wide S, mesomorphic temperature range [ 181. Therefore this situation may 
also be the case for the S,* and S, phases of a DOBAMBC sample which has a 
relatively wide S, temperature range. Neglecting the correlations between molecules, 
we shall resort to a mean field approximation analogous to the previous approaches 
[14, 151. A molecular statistical approach and the Landau expansion of the excess free 
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Molecular theory of chiral smectic C 65 

energy accompanied by the S,* structure are formulated in $2. The dependences of the 
expansion coefficients on the molecular length-to-breadth ratio and a few phase 
diagrams for the volume fraction and the temperature are provided in $3. A com- 
parison with the available experimental data by Carlsson and Dahl [19] is also given. 
Finally, $4 gives several remarks on the present study as well as the microscopic 
consideration of the S:-S, transitions. 

2. Theory 
2.1. Intermolecular potential 

The pairwise intermolecular potential Q,,,t composed of the repulsive part Wp and 
the attractive part Oat' can be written as 

@,m(Qi 9 0 - 2 )  = @rep(Qi, Q2) + Qdt'(Qi 7 Q 2 L  (1) 

where Q, is the set of variables (r,, R,); here r, and R, are the position and the eulerian 
angles of the i th molecule with respect to the laboratory frame, respectively. In this 
work, the S,* molecule is assumed to be non-polar along the long axis, whose 
molecular shape is modelled into a cylinderical one with the length L and the diameter 
D as shown in figure 1. In addition the intermolecular repulsive potential Qrep is 
assumed to be hard core. Because of the uniaxiality of the molecular shape, the peizo- 
and flexoelectric effects related to the ferroelectric coupling between molecules are 
attributed to only the intermolecular attraction but not to the repulsion. 

Figure 1 .  A cylindrical rod-like molecule. Here a, and 6, are the unit vectors along the long 
and the short molecular axes, respectively. p denotes the permanent dipole attached 
along I,%,. 

Now we shall assume that Wtt consists of the following six components: 

Qa"(Ql, a,) = Qs(Q,, Q2)  + QsB(Ql, Q 2 )  

+ @'(Qi, Q2) + @'(Qi, Q,) 

+ QF(Q1, Q 2 )  + QD(Q,,  a219 

which are put into the following forms: 

QS(Q15 Q 2 )  = A"O(rl2) + A22(rdP2(f% . f i2)?  

QSB(Ql, Q 2 )  = &(r,2)P2(G12 - fill + A02P2(Ql2  - a21 
+ A 4 0 ( r 1 2 ) P 4 ( G 1 2  * '1) + A 0 4 P 4 ( G 1 2  " 2 ) ,  
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66 M. Nakagawa 

Qc(Q,, Q,) = B(r12)(al x fi,) * fi12(al * a,), (5) 

QP(QI5 Q,) = C,<r,,>{@2 x $ 1 )  * f i I Z ( f i 1 2  * 01) 

(6) 

5 0'2) = cD<r12)($1 ' $ 2 1 3  (8) 

+ (a, x $ 2 )  - f i I Z ( f i l 2  * fi,)><f4 * fid 
QF(Qi, 0,) = CF(~IZ){(OI~ X $ 1 1  -I- ( f i 1 2  X $2))  *(a, X a 2 ) ( a 1  'fiz), (7) 

where P,(x) is the Legendre polynomial of the Zth order, r,, = r, - rl ,  rI2 = 

lr2 - rl 1, f i , ,  = r , , / r , , ,  and 0, and denote the unit vectors along the long and the 
short molecular axes, respectively. The direction of the unit vector is assumed to 
be coincident with the transverse permanent dipole. Consistent with the non-polar 
assumption along the long molecular axis, all these potential components are invari- 
ant under such orientational inversions as a, + -a, and/or 0, + - 0,. Now let 
us mention the property of each component of Wtt. Firstly, since Qs depends only on 
the relative angle between two long molecular axes, it possesses spherical symmetry 
and is invariant under full rotations of the relative position vector r I 2 .  For most 
rod-like liquid-crystalline molecules, this component originates from the van der 
Waals, or the induced dipole-induced dipole, interaction. Of course, the anisotropic 
part of Qs, A,,P,(fil a,), stabilizes the parallel alignment of molecules, or nematic 
order, and corresponds with to so to speak the Maier-Saupe potential [31]. Secondly 
the next component QsB is related to the rod-like molecular shape [21,24,25]. This 
type of potential has no spherical symmetry with respect to r,, different from Qs and 
therefore will hereafter be called the symmetry-breaking component. As will be shown 
later, QSB affects the thermodynamic stability of the phases with a layer structure as 
seen in the S,* or SA phase, whereas its effect completely vanishes in the N* or I phase. 
The effect of an analogous symmetry-.breaking component on the thermodynamic 
stability of the S, layer structure was first discussed by Senbetu and Woo [16]. 

Recently Kimura and Nakano [21] studied the effect of a somewhat elaborated 
potential corresponding to equation (4) on the surface tension of nematogens. In 
previous work [15] it was shown that the driving force of the S,*-S, phase transition 
comes from the symmetry-breaking component, QsB, but not from the spherically 
symmetric component, as. As can be easily seen from equation (4), A2, (= A,,) and 
A40 (= And) may have positive values for an elongated molecule as was assumed by 
Senbetu and Woo [ 161 and by us [ 151. On the other hand, van der Meer and Vertogen 
pointed out that A,, may become negative because of the interaction between a 
transverse permanent dipole and transversely induced dipole [ 12,201. Therefore Azo 
may become positive or negative depending on the microscopic molecular structure. 
As will be shown later, the S,* molecules tend to align along the layer normal for 
A,, > 0, whereas they may incline with respect to the layer normal for A,, < 0. Of 
course ,440 > 0 has a tendency to incline the S,* molecules whether A,, is greater than 
or less than zero. One purpose of this study is to show that such symmetry-breaking 
components of the attractive interaction, A,, and A,,, play an important role in 
making a tilted molecular alignment in the S,* phase. The third component, Qc, is a 
pseudo-scalar and represents the chiral interaction which results from the second- 
order perturbation energy of the dipole-quadrupole interaction between the uniaxial 
molecules without centrosymmetry, and it contributes to the twisting power of the 
helical S,* or N* structure [15,17,22,23,32]. As can be easily seen from equation ( 5 ) ,  
no twisting power exists in the S, phase, where the average of a, x a2 has to vanish. 
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Molecular theory of chiral smectic C 67 

The sign of B determines the sense of the helix in the S,* or N* phase. That is, B > 0 
prefers the left-hand helix, whereas B < 0 prefers the right-handed one. 

Now we shall consider the other three components in the right-hand side of 
equation (2), which are concerned with the ferroelectric coupling between molecules 
and are not included in the previous work [I  51. First, @' corresponds to the interaction 
between the chiral and the banana-like molecules and is essentially the same as that 
introduced by Osipov and Pikin [14]. This component reflects a polarity along the 
short molecular axis. As will be shown in the next subsection, this energy is concerned 
with the coupling between the molecular tilt and ferroelectric alignment of the 
transverse permanent dipoles, and results in the so-called piezoelectric effect. The 
second component QF is a pseudo-scalar and also related to the coupling energy 
between the molecular tilt and the dipole alignment as well as 0'. As will be shown 
in 42.4, this component bears on the flexoelectric effect related to the natural bend 
deformation in the helicoidal S,* structure. Of course, as can be easily seen from 
equation (7), this term does not affect the molecular ordering in the S, or N* structure 
because the average of a, - q2 or 0, - 6, has to vanish. The above two components, 
@' and mF, result of course from the biaxial and non-centrosymmetric molecular 
structure as is briefly derived in the Appendix. Finally the component represents 
the dipoleedipole interaction between the transverse dipoles attached along the short 
molecular axes. Like as, this is also assumed to have spherical symmetry with respect 
to r,,. The potential coefficient C,, should be positive to assure non-ferroelectric 
ordering of the transverse dipoles in the SA or N* phase. 

The above-mentioned components have to be closely related to the molecular 
structure and might be in principle expanded as an infinite series in terms of the 
spherical harmonics or the Wigner rotation matrices [24-261. In practice, this problem 
is quite interesting but very troublesome and beyond the scope of the present work. 
According to the result of the previous work [15] and the experimental finding that 
the difference in the transition temperatures between chiral DOBAMBC and a 
racemic mixture of it is sufficiently small [l], we may regard the contributions of the 
latter four interactions in equation (2) to the free energy as perturbations compared 
with those of the former two interactions. Therefore, in this work, we shall regard the 
Landau free energy accompanied with the inclined, helical and ferroelectric ordering 
of molecules in S,* phase as perturbation free energy compared with the free energy 
concerned with the layer structure in the SmA phase. Assuming the above-mentioned 
molecular geometry and making use of the intermolecular attractive interactions, the 
Landau free energy in the S,* phase will be derived in the following subsections on the 
basis of a molecular theory. 

2.2. Thermodynamic quantities and order parameters 
Making use of the intermolecular potentials presented in the previous subsection, 

we shall derive here the excess free energy in the thermal equilibrium system composed 
of N similar cylinders with absolute temperature T and the total volume V .  Through- 
out the following we shall restrict ourselves to the thermodynamic properties of S; 
near the S,*-S, transition point. Moreover we assume here that the S,* liquid crystals 
have relatively wide SA temperature ranges. Therefore, as was previously mentioned, 
the orientation fluctuation of the long molecular axes about the local director may 
be neglected in the derivation of the excess free energy concerned with the S? 
helicoidal structure. The similar approximation for such a saturated molecular 
orientation was accepted as accounting for the S,-N phase transition by Wadati and 
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68 M. Nakagawa 

Isihara [28] and Hosino et al. [29]. The validity of this assumption may be confirmed 
by N.M.R. measurements for the orientational order of SA liquid crystals with 
relatively wide S, temperature ranges [18]. This assumption seems also to be valid in 
the case of such S,* liquid crystals as DOBAMBC and its homologous series with 
relatively wide S, mesomorphic temperature ranges. 

As is well appreciated [30,33], within the second virial approximation for the 
intermolecular repulsion the Helmholtz free energy of the N-body system, FN,  is given 
by 

dQldQ?f(Q1).f(Q2){grep(Ql 9 Q2)@at'(QI, - K T f r c p ( Q I r  

where K is the Boltzmann constant, e = N / V  the average number density,f(Q,) the 
one-body distribution function of the i th molecule, grcp the pair correlation function 
in the system interacting through only intermolecular repulsion Wcp but not the 
attraction Wtt, and frep the Mayer function defined by 

f r c p ( Q , ,  Q,) = exp [ - Wp(Q,, Q,) /KT]  - 1. (10) 

As a consequence of the hard-core approximation for WCp, f r ep  takes - 1 for the 
intersecting pair of molecules and otherwise 0. In equation (9)f(Q,) of course has to 
satisfy the following constraint: 

dQ,f(Q,)  = V,  i = I ,  2 , .  . . , N .  (1  1 )  5 
Then the internal energy UN and the entropy SN are given by 

UN = f SdQirlQ2f(Q,),r.(Q2)n""(Qi, Q2>Qdtt(Q1, Q?), (12) 

and 

sN = f IC ~ ~ Q l d Q 2 f ~ Q l ~ f ~ Q 2 ~ f r e p ~ Q l ~  - eK ~ ~ Q l f ~ Q l ~ ~ o ~ ( e ~ ~ ~ l ~ } ~  

(13) 

respectively; here the first integral denotes the packing entropy which is not involved 
in our previous work [ 151. The second term corresponds to the orientational or mixing 
entropy. By minimizing FN under the constraint of equation (1 l) ,  we readily obtain 
the minimized free energy 

FN = - lj" - I C T I ~ ~ ~  - NKT log { Z , / Q } ,  (14) 

where Ircp and Z ,  are defined by 

and 

dQ,e~p[ -@~(Q, ) / t iT ] ,  V 
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Molecular theory of chiral smectic C 69 

respectively; here @, (a,)  is the mean field potential defined by 

Q l ( Q I >  = e ~ d Q 2 f ( Q 2 ) { g r e P ( Q l .  Q 2 ) @ a t t ( Q l ,  Q 2 )  - Q J ) .  (17) 

In the next subsection we introduce the macroscopic and microscopic order par- 
ameters to represent the s,* structure. 

4 2  

I 

( tv:layer normal 

w 
Y 

X 

Figure 2.  The macroscopic structure in the S l  phase. Here 0 and P are the tilt angle and 
helical pitch, respectively. n(z,) and v are the local director and the layer normal unit 
vector, respectively. The z axis in Cartesian coordinates is taken to be the layer normal. 

2.3. Order parameters 
The macroscopic order parameters of the molecular tilt angle 0 and the 

helical pitch P are shown in figure 2. Taking the z axis to be normal to the 
smectic layer in the Cartesian coordinate system fixed in the laboratory frame, 
the local director n(z , )  at z = z,  may be expressed by assuming the uniform 
helicoidal structure as 

n(zJ = ( v ]  cos qz, ,  v]  sin qz, ,  0, (1 8) 

v]  = sin8 (19) 

5 = cos8 (20) 

q = 27c/P, (21) 

where the macroscopic order parameters, v ] ,  t, and q are defined by 

respectively. Neglecting the thermal fluctuation of the long molecular axes 
about the spatially varying local director n(z, )  [12,14,28], we may approximate 
the one-body distribution function of the i th molecule, f ( Q , ) ,  as follows: 

f ( Q , )  = wk - Nz,))g(zl)M$J9 (22) 

where $, is defined as the angle between the transverse dipole of the i th molecule 
and v x n(z , ) ,  and the distribution functions, g(z , )  and h($,) ,  have to satisfy the 
following constraints: 

dz,g(z,) = d, s: 
and 

jr d$,h($;) = 1. 
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70 M. Nakagawa 

respectively; here d denotes the layer spacing. In the distribution function (22), the 
correlation between z, and $, was assumed to be negligible near the S&SA phase 
transition point of S,* liquid crystal with a relatively wide SA temperature range. In 
such a case, while the magnitude of the spontaneous polarization or the orientational 
order of I), appreciably changes near the S,*-S, transition point, the translational 
order of z, is not drastically affected by the temperature change but remains almost 
constant throughout the transition. Therefore the correlation between z, and $, may 
be neglected as was assumed above. 

To introduce the microscopic order parameters, g(z,) and A($,) may be expanded 
in terms of the appropriate orthogonal functions as follows: 

L 
dzi)  = C (coskz)co~kz~,  k = 0, ko, 2k0, . . . , 

k 

(26) 
l d  

(cos kz) = lo dz,g(z,) cos kzi, 

and 

respectively, where ko is the fundamental wave number of the one-dimensional density 
wave equal to 27c/d. Making use of equations (22), (25) and (27), we will derive U, of 
equation (12) and Zrep of equation (15) below. Throughout the following the calcula- 
tion concerned with the free energy, the internal energy and the entropy will be 
accomplished within the same order of approximation as the following expression for 
the Pikin-Indenbom free energy of S,* phase: 

where a and /3 are appropriate constants, K,  an elastic constant, Ac the Lifshitz 
invariant and pp and pF the piezo- and flexoelectric constants. 

For simplicity, in the calculation of the internal energy, we approximate the 
correlation function by the spherically symmetric one, viz. 

grep(Q1,Q2) g;;;,,. (30) 

Within the above-mentioned approximation, making use of equations (22), (25) and 
(27), the spherical component of the internal energy, U s ,  corresponding to QS can be 
written as 

where ni is the abbreviation for n(zi) and will be used hereafter. 
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Molecular theory of chiral smectic C 71 

Making use of the following approximations: 

P/(l - E )  N 1 - ___ '(I + I )  E ,  0 Q E 6 I ,  I = 0 and even. (33) 2 

and utilizing Rayleigh's formula [35], 

coskz,, = 2 iL(2L + 1)jL(kr,2)PL(fi ,2 - v ) ,  (34) 
L = 0 and even 

where j L ( x )  is the spherical Bessel function of the Lth order, one can readily obtain 

Then, restricting the attractive interactions to nearest neighbours, we can derive 
approximately 

where fi// is the effective attractive interaction defined by 

d,/ = 4ne jam 42 dr12g;,";2,4/(r12), (37) 

and r,, is the average intermolecular distance between nearest-neighbour molecules 
and may be evaluated as 

Here the volume fraction c and the length-to-breadth ratio ;1 are defined by 

n 
c = Q - D ~ L  = QV, , ,~ , ,  

4 

and 

1 = LID, 

respectively. Consequently we can derive the following result: 

N 
U s  = - 1 ( ~ : ' ( k )  + u ~ ~ ( ~ ) ~ ~ Q ~ } ( c o s ~ z ) ~ ,  

2 k  
where Q = (2n/P)D ( 6  1) and a!' and ai2 are defined by 
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72 M. Nakagawa 

and 

respectively. Here the first and the second numbers of the superscripts represent the 
power indices of q and Q, respectively. 

Similarly, with the aids of the above-mentioned approximations, UsB and U c  can 
be written as 

(42) 

(42 4 

(42 6) 

N 
USB = -2 ( U E ( k )  + 2&(k)$ + 2u;;((k)$}(coskz)2, 

&(k) = ~ { - 2520j2 (kro 1 + 2&J4 (kro )I, 
2 k  

2 
+ akO 

1 
U G k )  = - ~ I - (kro 1 + 1 OZ40j4 (kro )> + 

(43) 
N 

U c  = 7 C b2' (k)q2Q(cos kz)' , 
k 

(43 4 

Here the effective interaction coefficients, 6" and ii4, (= GM), are defined in similar 
manner as in equation (37). Next, we shall consider the internal energies concerned 
with the polar effects which are not involved in the previous work [15]. For con- 
venience, let us first define the following two unit vectors, 9, and w,, at z = z,: 

Of = (v x n,)/lv x n,l (44) 

&, = n, x O,,  (45) 

and 

where v is the unit vector along the z axis or the layer normal. 

transverse dipole of the i th molecule, $,, as 
Introducing these two unit vectors, we can express the unit vector along the 

$, = cos$,O, + sin$,*,; (46) 

here $, is defined as the angle between 0, and the transverse permanent dipole of the 
i th molecule. Making use of this expression, after some straightforward calculations 
we can find the internal energies concerned with the dipolar interactions as follows: 

Up = N C  c; (k)q( (cos $) (cos kz)2,  (47) 
k 

(47 4 

UF = N C c)I (k)~(Q(Cos$)(coskz)* ,  (48) 
k 
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Molecular theory of chiral smectic C 73 

c”D”k){(cos$)* + (sin$)*}, D N  (49) 

Here the definitions for the averaged interaction parameters, 2,, 2., and ED,  are also 
the same as equation (37). From equation (47), one finds that Up cc (coskz),. This 
result just corresponds to that found by Osipov and Pikin (see equation (20) in [14]). 

Now the total internal energy can be separated into two parts as 

U, = Uo((cos k z ) )  + U’((cos $), (sin $), q, Q; (coskz)), (50) 
where Uo((cos kz)) and U‘((cos $), (sin $), q ,  Q; (coskz)) are defined by 

(51) 
N 

Uo((coskz)) = - 1 {aio(k) + a”,”,(k)}(coskz)*. 
2 k  

and 

+ 2&(k)v4 + b2’(k)q2Q + 2c;(k)qS(cos$) + 2cL’(k)qSQ(cos $) 

+ c~(k)((cos$)* + (sin$)2)}(coskz)2, (52) 

respectively. 
As the next stage, let us consider the repulsive or molecular packing contribution 

which was not included in the previous work [15]. The internal energy has been 
calculated in the spatial structure expressed by equation (18). Since the steric 
hindrance between molecules is short range, the local director may be reasonably 
approximated in terms of the somewhat simplified 

n’(z) = (qcos4, qsin4,  t), 4 = constant. (53) 
Then making use of equation (53) and assuming that the molecules are relatively 
elongated, we can easily integrate equation (1 5) and obtain the following results 
within the approximation up to the order of q2 (see figure 3): 

N 
2: - I c{vOO(k) + 2v*O(k)q*}(coskz)2, 

2 k  

where voo(k) and v*’(k) are defined by 

(54) 

( 5 5 )  
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f' 

Figure 3. The excluded volume between two molecules. Sc structure is supposed for simplicity, 
and therefore the two molecules are parallel one another. 

and 

respectively; here the superscript numbers represent the power indices of q and Q as 
before. As will be shown later, since v2'(k) takes a positive value for an appropriate 
value of k N 27c/L, the molecules tend to orient along the layer normal due to the 
packing effect. In addition, it should be borne in mind here that such q2 dependence 
of Zrep is assured by the existence of the one-dimensional density wave in the S z  state. 
Such q2 dependence of equation (54) is essentially equivalent to that pointed out by 
Matsushita as the explanation of the S z  (S,)-S, transitions [13]. Of course, since he 
restricted the positions of molecules in the planes separated by d, the dependence of 
the packing effect on q was overestimated: Now Irep can be written as 

Zrep = I0((cos kz)) + Zl(q; (cos~z) ) ,  

where Io((cos kz)) and I ' (q;  (cos kz)) are defined by 

N 
Zo((coskz)) = - C C V " ( ~ ) ( ~ O S ~ Z ) ~  

2 k  

(57) 

and 

Il(q; (coskz)) = N C cv20(k)q2(cOSkz)2, (59)  

FN = - U o  - U 1  - KTIO - KTZ' - NKT logZ,. (60) 

k 

respectively. Finally the total free energy expressed by equation (14) leads to 

2.4. Landau expansion of the excess free energy 
In this subsection, we use a perturbation method to derive the excess free energy 

accompanied by the SmC* structure. As was previously mentioned regarding the 
excess free energy in SE phase as a perturbation energy compared with the free energy 
concerned with the SA phase, we shall resort to the following approximation for the 
one-body partition function 2, : 
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Molecular theory of chiral smectic C 75 

where 

here (Do(zl) and @(zI )  are defined by 

@O(Z,) = 1 {ao,(k) + + ct iTv"(k)}(cosk~)coskz, ,  (64) 
k 

and 

(D'(z) = 1 {a?(k)q2Q* + 2a&(k)y12 + a&(k)ylzQ2 + 2a$(k)q4 + b2'(k)q2Q 

+ 2cio(k)vS(cos$) + 2cbi(k)qSQ(cos$) + cE(k)((~os$)~ + (sin$)*) 

(65) 
respectively. While @,"(z,) is the mean field potential concerned with only the S, layer 
structure with 0 = 0 and Q = 0, @' (zI) is the mean field potential concerned with the 
ferroelectric helicoidal structure with 8 # 0 and Q # 0 as well as the S, layer 
structure. 

Consequently, the total free energy FN can be separated into two parts similar to 
that of (zI ), 

k 

+ 2v*o(k)c~Tq2)(cos kz) cos kz ,  

FN = ~ ( ( C O S  kz)) + F1((cos $), (sin $), q,  Q; (coskz)), (66) 

= - Uo - uTIO - NtiTlog(ZP/e), (67) 

where Fo and F' are defined by 

and 

respectively. Consequently the excess free energy per volumef' can be written as 

f' = F ' / V  = Q((iii; + ~tiTE*~)q* + $(lit2 + iiiZB)q2Q* + +P'q*Q 

+ ?fPq4(cos$) + C;qtQ(cos$) + fZ~((cos$) '  + (sin$)*)}. (69) 
Here the bars on these coefficients denote the summation over k ,  for example 

2:; = 1 a~;(k)(coskz)2. 
k 

Equation (69) is the Landau free energy based on the molecular statistical aspect. 
From equation (67), the translational order parameter, (cos kz), may be approxi- 
mately determined by minimizing F" ( E  FN) instead of FN with respect to itself, as 
follows: 

Making use of the microscopic order parameter (cos kz) for given T and e,  the 
rest order parameters, q,  Q ,  (cos$) and (sin$), can be determined by minimizing 
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equation (69) with respect to them. From the fact that C, must be positive, as was 
previously noted, we can immediately confirm (sin $) = 0 from d f '  /d(sin I)) = 0. 
Therefore the average orientation of the transverse dipoles attached along $ is 
collinear to Oi, consistent with considerations of symmetry [4]. Comparing f ' with the 
Landau free energy, equation (29), phenomenologically derived by Pikin and Inden- 
bom [4], and putting 

Ps = P<COS*), (72) 

where p means the transverse dipole moment, one finds the following correspondences: 

These are the Landau expansion coefficients derived by making use of a molecular 
statistical method. Next, from equation (71), truncating the Fourier series within 
k = 0 and k = k,,  the critical temperature corresponding to the SA-N* transition 
point where the translational order (cos k , z )  vanishes with increasing temperature 
can be analytically derived by the following expression: 

where we put 2 = - 3fi2, for convenience and A is defined by 

and KO and y are defined by 

KO = k,D = 2ny/L, 

and 

y = Lid, y < 1, (83) 
respectively. Here, y corresponds to the molecular packing along the layer normal and 
must be determined by minimizing the free energy FN 2: F, or maximizing TSN 
determined by equation (go), for given c and T. At the same time, the critical value 
of y at  the S,-N* phase transition point, y c ,  can be determined by maximizing TSN of 
equation (80). Next, from equation (73), the Curie temperature T, can be evaluated 
as 

where we again put P = - 3fi2,, for convenience. Therefore, in this work, the S$-SA 
phase transition is driven by the competition between one of the symmetry-breaking 
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Molecular theory of chiral smectic C 77 

components A40 and the other component A20, together with the repulsive or the 
packing contribution through v2'. This conclusion may be of course reduced to that 
in the previous work [15] apart from the effect of packing and the thermal fluctuation 
of the long molecular axes. In this aspect, the attractive symmetry-breaking com- 
ponent A40 tends to incline the molecules with respect to v ,  whereas the other com- 
ponent A20 and the repulsive interaction tend to align them parallel to v .  It is therefore 
confirmed that the effect of the molecular packing may contribute to the driving force 
of S$SA transition. 

3. Results and discussions 
3.1. The dependence of pp, pF, x, T, and TsN on the molecular 

length-to-breadth ratio A 
Let us introduce the following reduced quantities for convenience: 

pt = = 2j2(KoA)(~~sk,z)2,  
QEP 

with e* and a& defined by P/lAI and ii40/lAl, respectively. As was previously noted in 
52.1, while a& must be positive, e* = - 3220/lAl may be positive or negative. Roughly 
assuming (coskoz) 2: 1, the dependences of the above quantities on A are shown in 
figure 4(a)-(c) for various volume fractions c. y is set to yc in equations (85)-(89). 
According to van der Meer and Vertogen [12,20], we assume e* > 0 in the following 
numerical calculation. In addition a& may be positive but such a higher order 
contribution may be expected to be relatively small. Then we put e* = 3 and a& = 0 
and denote z as T,/TsN. Even though we put a20 into a certain positive value, the 
qualitative properties of T,* and T& were not found to be drastically affected. As a 
whole, we found numerically that an increase in a& tends to decrease T& and increase 
T,* . 

From figure 4 (a)-(c), one finds that while p? increases with the increasing A, p: 
decreases. Both T,* and TSN tend to increase with increasing 1. Therefore we may 
confirm that the anisotropic steric effect arising from the intermolecular repulsion 
stabilizes the layer structure and becomes more appreciable with increasing c. As was 
previously expected, we confirmed numerically that vZ0(K0A) defined by equation (56) 
has a positive value, viz. that the steric effect concerned with the layer structure has 
a tendency to align molecules along the layer normal. As can be found from equation 
(88), when 1 + co with a finite c, TS*N asymptotically approaches a certain value 
determined by 
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A=L/D 
Figure 4. The dependences of the material constants on the molecular length-to-breadth ratio 

for various volume fractions. Here e* and azo are set to 3 and 0, respectively. z is defined 
hy T,/Ts,. (a) c = 0.45; (b )  c = 0.5; (c) c = 0.55. 

Of course, this trend seems to be qualitatively in agreement with experimental findings 
tor SA or certain S z  homologous series [16,34]. That is, TSN appears to saturate with 
increasing molecular length for a homologous series. 

3.2. c-T phase diagram 
In this subsection, we shall give the c-Tphase diagrams obtained by equations (88) 

and (89), and discuss the dependence of them on the symmetry-breaking potential 
coefficient e*. For the moment, is set to 0 as before. In figure 5 (a)-(c), the c-T* 
(T* = KT/~A~)  phase diagrams are shown for various e*. From these results, the 
increase in e* is found to stabilize the S z  mesophase and destabilize SA as can be 
deduced from equations (88) and (89). From this finding, as was previously noted in 
42.1, one may confirm that e* or the interaction between the dipole and the induced 
dipole has a tendency to incline the molecules with respect to the layer normal. 
Moreover, the increase in c stabilizes both the SA and S,$ mesophases. As can be seen 
from equation (88), one finds in figure 5 (a)-(c) that no thermotropic S,-N" phase 
transition occurs for c > 0.575, because in such cases TSN* diverges for a certain y 
such that 0 < y < 1 and only the lyotropic SA-N* transition may occur. 
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0 1 2 3 4  
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Figure 5. The c-T* phase diagram. Here T* = KT/~AI and 1 and af are set to 10 and 0, 
respectively. (a) e* = 1; (b)  e* = 2; ( c )  e* = 3. 

3.3 .  Numerical estimation of the interaction parameters between 
DOBAMBC molecules 

Throughout the following, we roughly assume that P = 2 x 10P6m, D = 5 x 
10P"m, Q = 2 x 1027m-3, c = 0.5 and (coskoz) = 0.9 for DOBAMBC liquid 
crystal [4]. T, is evaluated as 368.3 K [19]. The molecular length-to-breadth ratio, I ,  
is set to 5 according to Osipov and Pikin [14]. In this case, from figure 4 ( b ) ,  we can 
estigate y as 0.6. Putting a ( T )  = ao(T - T,) in equation (73), we have 

a0 = Q C K P ,  

= ~c~4K,I j , (K, , ; l ) (cosk , z )~ ,  (91) 

and 
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From equation (91), we can evaluate tlo N 2.8 x 104J/m3K. This result is in fairly 
good agreement with the experimental result, 2.5 x lo4 J/m3 K, experimentally 
obtained by Carlsson and Dahl [19]. Then from equation (92) we can estimate Z/IC as 
2300K. Next, we shall evaluate ii4, below. From equation (74) we have 

b = ~ ~ i i 4 0 j 4 ( K o A ) ( ~ ~ s k o z ) 2 .  (93) 

Using the experimental data by Carlsson and Dahl, f l  = 21.25 x 104J/m3 [19], we 
can evaluate i i 4 0 / ~  as 100 K from equation (93). Now, from the above results, we can 
roughly evaluate ii2O/ii40 N - 7.7. 

by using equation (75). KZ is evaluated from equation (75) 
as 

Next let us consider 

K,* = e(iii2) , 

N e( - 8.64,). (94) 

By making use of the experimental data K,* N 4 x 10sJ/m3 [19], we can find 
\ i i , , \ /~  ‘v 1700K. For the nematic liquid crystal, PAA [31], \ti2,\/. N 1800K. 
Therefore the present result seems to be qualitatively accepted. Finally, let us estimate 
the chiral component b. From the experimental data by Carlsson and Dahl [19] we 
can estimate A: as - 2 x lo5 J/m3. From equztion (76), A: is reduced to 

N 14e6. (95) 

Then I ~ / I c  is estimated as 10 K. From the above discussion, ii,,, il.,,, ti40 and 6may be 
evaluated as 1700 K ,  - 770 K ,  100 IC and - 10 K ,  respectively. Some further data may 
be required to examine these parameters in more detail. However this point will not 
be discussed further in this paper. 

4. Conclusion 
We presented a molecular theoretical derivation of the Landau free energy of S z  

liquid crystals taking account of certain ferroelectric interactions. In this work, it was 
found that the steric effect tends to align to molecules along the layer normal, whereas 
one of the symmetry-breaking components caused by the dipole-induced dipole 
interaction may have a tendency to incline them, and that the competition between 
such two symmetry-breaking components and the steric effects determines the Curie 
temperature. This conclusion is simply a generalization of that derived by van der 
Meer and Vertogen [ 12,201, who concluded theoretically that the competition 
between the intermolecular repulsion and the attraction determined the tilt angle of 
the S,* molecules. 

From the Curie temperature expressed by equation (89), one may see that while 
the increase of at, (> 0) stabilizes the inclined molecular alignment in S,* phase, the 
steric effect may destabilize it. Of course, in agreement with the previous conclusion 
[15], the increase of e* > 0 (or A,, < 0) stabilizes the inclined molecular alignment, 
whereas e* < 0 (or A,, > 0) may destabilize it. We also found that both the S z - S ,  
and S,-N* transition temperatures increase with the increasing molecular length-to- 
breadth ratio 2,  or that the anisotropic steric effect stabilizes the smectic layer 
structure for the relatively long molecules. In this case, z = T,/T,, was found to 
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slightly decrease with increasing 2. It was found that the flexoelectric constant 
increases with increasing 2, while the piezoelectric constant decreases. Therefore, for 
relatively long Sz molecules, the flexoelectric effect may become dominant compared 
with the piezoelectric effect. Since hard-core intermoelcular repulsion was assumed in 
the present work, such a steric effect between cylindrical molecules might be over- 
estimated. Nevertheless, the above-mentioned qualitative properties of material con- 
stants still seem to be valid. The present results remain to be compared with available 
experimental data of S z  homologous series in the future. 

To conclude the present work, we must mention the driving mechanism of the 
Sz-SA transition in connection with the previous work [15]. As can be seen from 
equation (89), if e* > 0 and a:, > 0, then T,* increases or the S,* structure with 
the inclined molecules may be stabilized. Therefore in such a case the Sz-SA 
transition is not, so to speak, of the order-disorder type as noted by van der Meer 
and Vertogen [12,20]. On the other hand, even though e* < 0 or A,,  > 0 in 
equation (89), the S z - S ,  transition may be driven by the contribution of a:, > 0 such 
that lOa~,j,(K,A) > - e*j,(&A). In the latter case, if the orientational fluctuation of 
the long molecular axes had been concerned in the present approach, the Sz-S, 
transition temperature T, might of course have been lower than that predicted by 
equation (89) as can be deduced from the conclusion in the previous work [15]. 
According to the above-mentioned aspect, it may be concluded that the order- 
disorder type s*,-s, transition found in the previous work [15] seems to occur for s*, 
liquid crystals with a relatively large thermal fluctuation near the S*,-S, transition 
point or with a relatively narrow SA mesomorphic temperature range above the ST 
range. On the other hand, the Sz-SA transition driven by the molecular packing effect 
also seems to occur for S z  liquid crystals (e.g. DOBAMBC) with an almost saturated 
orientational order near the Sz-SA transition point or with a relatively wide SA 
mesomorphic temperature range above the S z  range. According to the previous [ 151 
and the present considerations, we may conclude that v2' and a$ > 0 tend to align 
the S z  molecules along the layer normal and to incline them with respect to it, 
respectively, whereas a;, has a tendency to align them along the layer normal or to 
incline them depending on a,*, > 0 or a:, < 0, respectively. 

From the numerical estimation of the interaction coefficients in 93.3, one may 
deduce a& < 0 for DOBAMBC molecules because of the existence of a relatively 
strong dipole moment along the short molecular axis. 

The author would like to thank Professor T. Akahane for invaluable discussions 
and his continuous encouragement throughout the present work. He is also grateful 
for fruitful discussions on the intermolecular interactions with Professor H. Kimura 
in Nagoya University. 

Appendix 
Let us evaluate herein the piezo-potential of equation (6 )  and the flexo-potential 

of equation (7) by considering the biaxiality of an attractive chiral interaction similar 
to the Osipov and Pikin's approach [14]. As shown in figure 6, let us consider a pair 
of S,* molecules. Here 2w stands for the distance between two induced dipoles in a 
molecule and the directions of the induced dipoles denoted by the unit vectors iy) and 
Lt) ( r  = 1, 2), which are defined by 

L(1) = c o s a n ,  + cosp$, + cosyQ,, (A 1) 
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Figure 6. The two interacting S,* molecules. ry’ (i = 1, 2; r = 1, 2) denote the directions of 
the induced dipales concerned with the biaxial chiral interaction, Here if we assume that 
the induced dipoles have no component with respect to &i = x ai, then the inter- 
action we are concerned with is reduced to that introduced by Osipov and Pikin [14]. 

where cosa, cosp and cosy are the direction cosines of the unit vector L\’) with 
respect to f i l ,  and Q, = x a,, respectively. 

The second order perturbation energy between the induced dipole and the quad- 
rupole interaction can be written as 

where A denotes the interaction coefficients, r$ is the relative position vector between 
cl ( r )  and L2(r’), and fy; is defined by r$/lr$l. Then assuming r I 2  B w and making use 
of the following approximations: 
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one can readily find the following result accompanied with a few leading terms: 

@;? N A(r12)( f i I  x a,) - ir12(fi, - fi,)cos2a 

+ (& x s z , )  - 012(012 * 0,)) (sz, * sz,)cosacosp 

Here the first term in the right-hand side represents the chiral interaction and corre- 
sponds to equation (5). The second represents the piezo-potential first introduced by 
Osipov and Pikin [14] and leads to equation (6). Finally the third leads to the 
flexo-potential and just corresponds to equation (7). It should by borne in mind that 
the last component was not involved in Osipov and Pikin's approach because they 
restricted themselves to the case of y = 71/2 [14], and in their approach the flexo- 
electric contribution was not involved. 
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